Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Samuel Robinson Jebas,^a Thailampillai Balasubramanian^b* and Mark E. Light^c

^aDepartment of Electronics, St Joseph's College, Tiruchirappalli 620 002, India, ^bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India, and ^cSchool of Chemistry, University of Southampton, Highfield SO17 1BJ, England

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å R factor = 0.054 wR factor = 0.137 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $C_6H_6NO_2^+\cdot NO_3^-\cdot H_2O$, the nicotinium cation is essentially planar. $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the molecules into layers parallel to the $(10\overline{1})$ plane.

Nicotinium nitrate monohydrate

Received 4 July 2006 Accepted 15 July 2006

Comment

Nicotinic acid (vitamin B3), known as niacin, is a lipid lowering agent widely used to treat hypertriglyceridemia by the inhibition of lipolysis in adipose tissue (Athimoolam & Rajaram, 2005). The nicotinic acid complex 5-methylpyrazine-2-carboxylic acid-4-oxide is a commonly used drug for the treatment of hypercholesterolemia (Lorenzen *et al.*, 2001). Coordination complexes of nicotinic acid with metals such as Sn possess antitumour activity greater than the well known *cis*platin or doxorubicin (Gielen *et al.*, 1992). The enzyme nicotinic acid mononucleotide adenyltransferase is essential for the synthesis of nicotinamide adenine dinucleotide in all living cells and is a potential target for antibiotics (Kim *et al.*, 2004). As a part of our investigation of inorganic salts of nicotinic acid, we report here the crystal structure of nicotinium nitrate monohydrate, (I).

The asymetric unit of (I) contains a nicotinium cation, a nitrate anion and a water molecule (Fig. 1). Protonation of atom N1 of nicotine results in a widening of the C2-N1-C6 angle to 122.9 (3)°, compared with 118.9 (3)° in unprotonated nicotinic acid (Kutoglu & Scheringer, 1983). The nicotinium cation is essentially planar, with a maximum deviation from the mean plane of 0.048 (2) Å for atom O1.

The crystal packing is stabilized by $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 1), which link the molecules into layers parallel to the (101) plane (Fig. 2).

Experimental

Nitric acid was added dropwise to an aqueous solution of nicotinic acid, in stoichiometric amounts. The solution was heated at 323 K for

Acta Cryst. (2006). E62, o3481–o3482

All rights reserved

© 2006 International Union of Crystallography

organic papers

2 h. Colourless block-shaped crystals of (I) were obtained by slow evaporation over a period of one week.

Crystal data

 $C_{6}H_{6}NO_{2}^{+} \cdot NO_{3}^{-} \cdot H_{2}O$ $M_{r} = 204.14$ Monoclinic, P_{1}/n a = 6.6539 (7) Å b = 12.3682 (15) Å c = 10.1814 (15) Å $\beta = 100.967 (7)^{\circ}$ $V = 822.59 (18) Å^{3}$

Data collection

Bruker Nonius KappaCCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\rm min} = 0.970, T_{\rm max} = 0.990$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.137$ S = 0.981604 reflections 135 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
	$ \begin{array}{c} N1 - H1 \cdots O3^{i} \\ O1 - H1A \cdots O6 \\ O6 - H6A \cdots O5 \\ O6 - H6B \cdots O3^{ii} \\ C2 - H2 \cdots O2^{iii} \\ C4 - H4 \cdots O1^{iv} \\ C6 - H6 \cdots O5^{i} \\ C6 - H6 \cdots O4^{iv} \end{array} $	0.86 0.82 0.93 (5) 0.88 (5) 0.93 0.93 0.93 0.93	1.93 1.77 1.92 (5) 1.96 (5) 2.43 2.46 2.35 2.32	2.782 (3) 2.587 (3) 2.843 (3) 2.825 (3) 3.173 (4) 3.262 (4) 3.051 (4) 3.013 (4)	170 180 171 (4) 173 (5) 137 144 132 131

Symmetry codes: (i) x, y - 1, z; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Water H atoms were located in a difference map and refined freely [O-H = 0.88 (5) and 0.93 (5) Å]. All other H atoms were placed in calculated positions, with C-H = 0.93 Å, O-H = 0.82 Å and N-H = 0.86 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(O)$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

6153 measured reflections 1604 independent reflections 894 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.109$ $\theta_{\text{max}} = 26.1^{\circ}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0639P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Figure 1

The asymmetric unit of (I), showing the atom-numbering scheme, with 50% probability displacement ellipsoids. Hydrogen bonds are drawn as dashed lines.

Figure 2

A packing diagram for (I), viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

References

Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.

- Gielen, M., Khloufi, A. E., Biesemans, M. & Willem, R. (1992). *Polyhedron*, **11**, 1861–1868.
- Kim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. & Suh, S. W. (2004). Acta Cryst. D60, 948–949.
- Kutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232-234.
- Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. & Schwabe, U. (2001). Mol. Pharmacol. 59, 349–357.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Gottingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.