Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samuel Robinson Jebas, ${ }^{\text {a }}$ Thailampillai Balasubramanian ${ }^{\text {b }}$ and Mark E. Light ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Electronics, St Joseph's College, Tiruchirappalli 620 002, India, ${ }^{\text {b }}$ Department of Physics, National Institute of Technology,
Tiruchirappalli 620015 , India, and ${ }^{\text {c }}$ School of Chemistry, University of Southampton, Highfield SO17 1BJ, England

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.137$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Nicotinium nitrate monohydrate

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{NO}_{3}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the nicotinium cation is essentially planar. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into layers parallel to the (10 $\overline{1})$ plane.

Comment

Nicotinic acid (vitamin B3), known as niacin, is a lipid lowering agent widely used to treat hypertriglyceridemia by the inhibition of lipolysis in adipose tissue (Athimoolam \& Rajaram, 2005). The nicotinic acid complex 5-methylpyrazine-2-carboxylic acid-4-oxide is a commonly used drug for the treatment of hypercholesterolemia (Lorenzen et al., 2001). Coordination complexes of nicotinic acid with metals such as Sn possess antitumour activity greater than the well known cisplatin or doxorubicin (Gielen et al., 1992). The enzyme nicotinic acid mononucleotide adenyltransferase is essential for the synthesis of nicotinamide adenine dinucleotide in all living cells and is a potential target for antibiotics (Kim et al., 2004). As a part of our investigation of inorganic salts of nicotinic acid, we report here the crystal structure of nicotinium nitrate monohydrate, (I).

(I)

The asymetric unit of (I) contains a nicotinium cation, a nitrate anion and a water molecule (Fig. 1). Protonation of atom N 1 of nicotine results in a widening of the $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$ angle to $122.9(3)^{\circ}$, compared with 118.9 (3) ${ }^{\circ}$ in unprotonated nicotinic acid (Kutoglu \& Scheringer, 1983). The nicotinium cation is essentially planar, with a maximum deviation from the mean plane of 0.048 (2) \AA for atom O1.

The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which link the molecules into layers parallel to the (10 $\overline{1})$ plane (Fig. 2).

Experimental

Nitric acid was added dropwise to an aqueous solution of nicotinic acid, in stoichiometric amounts. The solution was heated at 323 K for

Received 4 July 2006
Accepted 15 July 2006

2 h . Colourless block-shaped crystals of (I) were obtained by slow evaporation over a period of one week.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}^{+} \cdot \mathrm{NO}_{3}-\cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=204.14$
Monoclinic, $P 2_{1} / n$
$a=6.6539$ (7) \AA
$b=12.3682(15) \AA$
$c=10.1814$ (15) \AA
$\beta=100.967$ (7) ${ }^{\circ}$
$V=822.59(18) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.641 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.15 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.2 \times 0.2 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)

$$
T_{\min }=0.970, T_{\max }=0.990
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.137$
$S=0.98$
1604 reflections
135 parameters

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme, with 50% probability displacement ellipsoids. Hydrogen bonds are drawn as dashed lines.

Figure 2
A packing diagram for (I), viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

References

Athimoolam, S. \& Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.
Gielen, M., Khloufi, A. E., Biesemans, M. \& Willem, R. (1992). Polyhedron, 11, 1861-1868.
Kim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. \& Suh, S. W. (2004). Acta Cryst. D60, 948-949.

Kutoglu, A. \& Scheringer, C. (1983). Acta Cryst. C39, 232-234.
Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. \& Schwabe, U. (2001). Mol. Pharmacol. 59, 349-357.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Gottingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

